
Running head: DEVELOPMENT OF VISUAL PRODUCTION AND RECOGNITION1

Parallel developmental changes in children’s production and recognition of

line drawings of visual concepts

Bria Long1, Judith E. Fan1,2, Holly Huey2, Zixian Chai1, Michael C. Frank1

1Department of Psychology, Stanford University
2Department of Psychology, University of California San Diego



DEVELOPMENT OF VISUAL PRODUCTION AND RECOGNITION 2

Abstract

Childhood is marked by the rapid accumulation of knowledge and the prolific

production of drawings. We conducted a systematic study of how children create and

recognize line drawings of visual concepts. We recruited 2-10-year-olds to draw 48

categories via a kiosk, resulting in >37K drawings. We analyzed changes in the

category-diagnostic information in these drawings using vision algorithms and

annotations of object parts. We found developmental gains in children’s inclusion of

category-diagnostic information that was not reducible to variation in visuomotor

control or effort. Moreover, unrecognizable drawings contained information about the

animacy and size of the category children tried to draw. Using “guessing games” at the

same kiosk, we found that children improved across childhood at recognizing each

other’s line drawings. This work leverages vision algorithms to characterize

developmental changes in a large dataset of children’s drawings and suggests that

changes in children’s drawings reflect refinements in internal representations.
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Parallel developmental changes in children’s production and recognition of

line drawings of visual concepts

Introduction1

What makes a drawing of a rabbit look like a rabbit and not a dog? As adults, our2

visual concepts – our sense of what particular objects look like – are seamlessly3

integrated into our visual experience. With a single glance, incoming patterns of light4

make contact with our visual concepts, supporting the rapid categorization of a wide5

variety of inputs, from real-life exemplars to sparse line drawings and stylized6

animations (Biederman & Ju, 1988; Gibson, 1971; Hertzmann, 2020; Sayim, 2011). We7

can also access our visual concepts in the absence of perceptual input – going beyond8

what we have previously experienced to imagine new visual entities and create external9

representations of them (Clottes, 2008; Finke & Slayton, 1988; Gregory, 1973).10

Yet while these feats of perceiving and creating can feel effortless, the11

representations that support them are acquired and refined gradually as children learn12

about the visual world (Rosch, 1978). Children begin building visual concepts in13

earnest during the second year of life as they learn which labels refer to both depictions14

and real-life exemplars of categories (DeLoache, Pierroutsakos, & Uttal, 2003). And by15

their second birthday, children can learn category labels for novel objects after exposure16

to just one or a few exemplars (Carey & Bartlett, 1978; Pereira & Smith, 2009; Soja,17

Carey, & Spelke, 1991) and succeed even for sparse 3D representations of these objects18

devoid of color and texture-based cues (Pereira & Smith, 2009).19

But children take many years to learn how to appropriately generalize and20

discriminate between visual concepts. For example, children gradually improve in their21

ability to accurately group together categories based on taxonomy versus salient22

perceptual features (e.g., grouping a snake with a lizard vs. a hose) (Fisher, Godwin, &23

Matlen, 2015; Tversky, 1985). Further, children’s visual recognition abilities also have a24

protracted developmental trajectory throughout middle childhood (Bova et al., 2007;25

Juttner, Wakui, Petters, & Davidoff, 2016; Nishimura, Scherf, & Behrmann, 2009) as26

children become steadily better at discriminating between similar exemplars of scenes,27
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objects, bodies, and faces between 5-10 years of age (Weigelt et al., 2014), and28

increasingly skilled at recognizing objects across unusual poses or 3D rotations, reaching29

adult-level performance only in adolescence (Bova et al., 2007; Dekker, Mareschal,30

Sereno, & Johnson, 2011; Nishimura, Scherf, Zachariou, Tarr, & Behrmann, 2015). In31

turn, changes in children’s recognition abilities are related to changes in how the visual32

cortex encodes different objects and scenes (Balas & Saville, 2020; Cohen et al., 2019;33

Dekker et al., 2011; Gomez, Natu, Jeska, Barnett, & Grill-Spector, 2018; Kersey, Clark,34

Lussier, Mahon, & Cantlon, 2015; Nishimura et al., 2015); for example, children’s35

ability to discriminate similar faces is correlated with the sensitivity of face-selective36

regions to these particular faces (Natu et al., 2016). These changes in children’s ability37

to discriminate exemplars may be driven by children’s increasing attention to the38

relationships between object parts and their overall configuration (Juttner, Muller, &39

Rentschler, 2006; Juttner et al., 2016; Mash, 2006). Together, these findings suggest40

that visual concepts are refined throughout childhood as children’s perceptual abilities41

mature and children learn how to discriminate between similar categories.42

Psychologists have typically probed children’s visual concepts by asking children43

to make discrete choices between small samples of stimuli that vary along dimensions44

chosen by an experimenter. While valuable for testing specific hypotheses, this strategy45

is also characterized by severe limits on the amount of information that can be acquired46

on any given experimental trial. By contrast, generative tasks such as drawing47

production can overcome these limits by enabling the collection of more information48

about the contents of children’s visual concepts on every trial. Such tasks are feasible to49

administer in experimental settings given that almost all children prolifically produce50

drawings of visual concepts from an early age (Piaget, 1929). And there is substantial51

precedent for examination of children’s drawings to probe their knowledge about the52

visual world (Fury, Carlson, & Sroufe, 1997; Karmiloff-Smith, 1990; Kellogg, 1969;53

Piaget, 1929). Freehand drawing production tasks thus provide a valuable tool for54

characterizing developmental changes in visual concepts. Here we create a large digital55

dataset of children’s drawings and leverage innovations in machine learning to56
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characterize how changes in children’s drawings are related to their growing57

understanding of various visual concepts.58

Drawings as a window into visual representations59

Our work builds on a long literature that has argued that children’s drawings of60

objects reflect not only what they can directly observe, but what they know about these61

objects (see “intellectual realism” in Freeman & Janikoun, 1972; Luquet, 1927). For62

example, even when drawing from observation, children tend to include features that63

are not visible from their vantage point but are nevertheless diagnostic of category64

membership (e.g., an occluded handle on a mug) (Barrett & Light, 1976; Bremner &65

Moore, 1984). Further, direct visual or haptic experience with novel objects tends to66

change what information children draw (Bremner & Moore, 1984). These initial studies67

have focused on a small number of visual concepts – especially the human figure68

(Goodenough, 1963) – finding that younger children (4-5 years) tend to include fewer69

category-diagnostic cues in their drawings, such as those distinguishing an “adult” from70

a “child,” than somewhat older children (6 years), who tend to enrich their drawings71

with more diagnostic part information (Cox & Ralph, 1996; Sitton & Light, 1992).72

However, the generality of the conclusions based on this work has been unclear given73

the narrow range of concepts tested and the lack of generic methods for measuring74

diagnostic information in drawings. Further, little work has systematically related75

children’s ability to include diagnostic visual information in drawings to their emerging76

abilities to control and plan their motor movements – which certainly influence how and77

what children draw (Freeman, 1987; Rehrig & Stromswold, 2018).78

Yet research in adults does suggest that what we draw is tightly linked to what we79

know about objects and how we perceive them. For example, patients with semantic80

dementia tend to produce drawings without distinctive visual features (Bozeat et al.,81

2003) or include erroneous features (e.g., a duck with four legs). One recent study found82

that adults can produce detailed drawings of scenes after only viewing them for a few83

seconds, interleaved among other scenes (Bainbridge, Hall, & Baker, 2019). Another84
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study found that recognizing an object and producing a drawing of an object recruit a85

shared neural representation in early visual cortex (Fan et al., 2020). Further, practice86

producing drawings of objects can impact perceptual judgments about them. In one87

study, adult participants who repeatedly drew similar objects (i.e. beds vs chairs) were88

better able to distinguish them in a categorization task (Fan, Yamins, & Turk-Browne,89

2018). Drawing expertise is also associated with enhanced visual encoding of object90

parts and their relationships (Chamberlain et al., 2019; Perdreau & Cavanagh, 2013a,91

2013b, 2014), but not differences in low-level visual processing (Chamberlain et al.,92

2019; Chamberlain, Kozbelt, Drake, & Wagemans, 2021; Kozbelt, 2001; Perdreau &93

Cavanagh, 2013b) or shape tracing skills (Tchalenko, 2009).94

The current study95

Building on these traditions, in the current paper we characterize developmental96

changes in how children produce and recognize line drawings as an additional lens into97

children’s growing understanding of these visual concepts. We anticipated that98

children’s ability to produce and recognize line drawings would continue to develop99

beyond the preschool and elementary school years (Dekker et al., 2011; Gomez et al.,100

2018; Weigelt et al., 2014) and that some – but not all – age-related variation in101

drawing ability would be due to improvements in planning and motor control (Freeman,102

1987; Rehrig & Stromswold, 2018). In particular, as children learn the visual103

information most diagnostic of a visual concept (Rosch, 1978), this visual knowledge104

may manifest in both: (1) an enhanced ability to produce line drawings that contain105

category-diagnostic information and (2) a greater sensitivity to this same visual106

information when recognizing line drawings made by other children.107

We thus first collected digital drawings of 48 different visual concepts from a large108

sample of children spanning a wide age range (2-10 years), resulting in a corpus109

containing >37K drawings. In quantify developmental changes in these drawings at110

scale, we leveraged techniques from modern machine learning and computer vision, in111

particular the latent feature representations learned by large neural networks trained on112
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visual discrimination tasks (Radford et al., 2021; Simonyan & Zisserman, 2014), which113

have been shown in prior work to capture meaningful variation in human perceptual114

judgments about both natural images and drawings (Battleday, Peterson, & Griffiths,115

2020; Fan et al., 2018). We use these latent feature representations both to quantify the116

category-diagnostic variation in each drawing and to analyze the similarity structure in117

children’s unrecognizable drawings. In addition, we crowd-sourced part labels for each118

stroke in a subset of these drawings to quantify how the parts children included in their119

drawings changed across development. Finally, we administered drawing recognition120

tasks to measure how well children of different ages could identify which visual concept121

a given drawing was intended to convey.122

This study makes a number of contributions relative to the prior literature. First,123

we collect, annotate, and share a large sample of children’s drawings from scribbles124

through sophisticated sketches, creating valuable resources for future research. Second,125

we develop an analytic approach suitable for exploring these drawings, which yields a126

number of intriguing findings around drawing development – including the presence of127

semantic information even in children’s unrecognizable drawings. Finally, we find128

evidence for the relation between developmental changes in children’s drawing abilities129

and their growing understanding of the visual concepts they are drawing. Older130

children include more diagnostic visual information and relevant object parts when131

producing line drawings, and these gains are not easily explainable by category132

exposure frequency or visuomotor development. Further, children’s developing ability to133

recognize drawings is related to the presence of category-diagnostic information in these134

drawings. Together, we provide a new set of tools and insights into the development of135

drawings and visual representations in childhood, which we hope will spur future136

research on this topic.137
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Figure 1 . Top row: Museum kiosk where children participated, and examples of the

tracing, drawing, and guessing trials. Bottom row: Example drawings from several

categories; more red drawings contain more diagnostic visual features (as assessed by

classifier evidence using VGG-19 FC6 features, see Methods).

Results138

Development of drawing production139

A free-standing, child-friendly kiosk was installed at a local children’s science140

museum (see Figure 1, top row). Children used a touchscreen tablet attached to the141

kiosk to produce their drawings. To evaluate how children’s visuomotor abilities may142

limit their ability to include the relevant visual features in their drawings (Freeman,143

1987; Rehrig & Stromswold, 2018), we also included a set of shape-tracing trials in the144

drawing production task to measure children’s tracing skills (see Figure 1, top row).145

After completing these tracing trials, children were verbally prompted to draw different146
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visual concepts. These categories were selected to include both animals and inanimate147

objects, as well as categories that are either commonly drawn (e.g., cup, face, cat) or148

less commonly drawn (e.g., octopus, piano, camel) by children (see Methods for more149

details, see Appendix A6). The final, filtered dataset contained 37,770 drawings of 48150

categories from N=8084 children (average age: 5.33 years old; range: 2–10 years old;151

see Appendix A for detailed age demographics).152

Measuring category-diagnostic information in such a large dataset of children’s153

drawings spanning a wide variety of concepts poses a major analytical challenge. Until154

recently, researchers attempting to analyze even small drawing datasets had to develop155

ad hoc criteria for scoring drawings based on their intuitions about what the distinctive156

visual features could be for each target concept (e.g., handles for mugs) (e.g. Barrett &157

Light, 1976; Goodenough, 1963). Fortunately, recent advances in computer vision have158

made it possible to measure category-diagnostic information in images at scale by159

leveraging latent feature representations learned by large neural networks (Radford et160

al., 2021; Simonyan & Zisserman, 2014), although at some cost to interpretability, as161

these learned features are not guaranteed to map onto nameable object parts (e.g.,162

"handles"). Informed by this context, we use two approaches with complementary163

strengths to analyze our drawing dataset: first, we use model classifications to estimate164

the amount of category-diagnostic information in each drawing; second, we use165

crowdsourcing to identify which parts children included in their drawings in a general166

and scalable way.167

Our first approach leverages the latent feature representations learned by large168

neural-network models to derive measures of a drawing’s recognizability — how much169

category-diagnostic information it contains. Specifically, we analyzed the degree to170

which high-level visual features of each drawing could be used to decode the category171

that children intended to draw (e.g., dog), using features from VGG-19, a deep172

convolutional neural network pre-trained on Imagenet classification (Simonyan &173

Zisserman, 2014). Activations for each sketch were taken from the second-to-last layer of174

this model as prior work has shown that activations from deeper layers of convolutional175



DEVELOPMENT OF VISUAL PRODUCTION AND RECOGNITION 10

neural networks with a similar architecture correspond to the visual features that enable176

basic-level recognition (e.g., cat vs. dog) in both sketches and photographs (Fan et al.,177

2018; Yamins et al., 2014). These features were used to train logistic-regression178

classifiers to predict which of the 48 categories children were asked to draw (e.g., couch,179

chair) for sets of held-out drawings (see Methods), balanced across categories. For every180

drawing, this procedure thus yielded: (1) a binary classification score, indicating181

whether a given drawing contained the visual features that enabled basic-level182

recognition; and (2) a probability score for each of the 48 categories, capturing the183

degree to which a given drawing contained the visual features relevant to that category.184

We then validated these VGG-19 model classifications by using embeddings from185

a modern contrastive language-image pre-training model (CLIP, Radford et al. 2021),186

which jointly trains an image and a text encoder to predict image and text pairings.187

While less work has related the embeddings of this model class to either human188

behavioral or neural representations, CLIP outperforms other deep CNNs at recognizing189

visual concepts across different visual formats (Radford et al., 2021) and recent work190

suggests that CLIP embeddings show equal or better performance in predicting ventral191

stream responses (Conwell, Prince, Kay, Alvarez, & Konkle, 2022). CLIP classifications192

were obtained by assessing the similarity between model embeddings for each sketch to193

each category label, as in Radford et al., 2021. This method thus also yields both binary194

classification scores and probability scores for each of the 48 categories in the dataset.195

As our second approach, we used a crowd-sourcing method to recruit human196

annotators to tag every stroke in a subset of N=2160 drawings with a part label (see197

Methods). To ensure that these drawings were representative of the larger dataset, we198

chose 16 visual concepts (half animate, half inanimate, see Methods) and randomly199

sampled drawings from children 4-8 years of age. Using these annotations, we then200

analyzed changes in which parts children drew and how much they emphasized those201

parts in their drawings. The goal of these additional analyses was to provide insight202

into which specific elements within children’s drawings change across development,203

giving rise to any changes in category-diagnostic information measured using model204
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classifications.205
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Figure 2 . A. Proportion of drawings recognized as a function of children’s age; each dot

represents the proportion of drawings that were correctly classified in a given category;

the grey chance line represents 1/48 (number of categories in the dataset). B: The

y-axis represents the log-odds probabilities (i.e. classifier evidence), binned by the age

of the child who produced the drawing. Categories on the x-axis are ordered by average

log odds probabilities for each category in descending order. Error bars represent

bootstrapped 95% confidence intervals in both plots.

Drawings of visual concepts become more recognizable across206

childhood. We found that children’s drawings increased in recognizability steadily207

with age, as measured using model classification performance (VGG-19, Figure 2A,208

Table 1; see validation using CLIP in Appendix, Figure A2, Table A3).1 In an209

additional study, we replicated this finding in a separate controlled experiment in which210

a researcher was present while children produced their drawings (N=121 children, ages211

4-9 years), suggesting that the developmental changes we measured were not an artifact212

of data collection at the museum kiosk (this is a subset of the data published in213

BLINDED (in press), see Appendix, Figure A4, Table A4).214

1 We found that using features from deeper layers of VGG-19, rather than earlier layers, was critical to

recovering these age-related changes, suggesting that drawings produced by older children primarily

differed from those by younger children with respect to mid- and high-level visual features (see

Appendix, Figure A5)
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More frequently drawn categories are not more recognizable. What215

explains these gradual increases in recognizability? One way of accounting for these216

age-related differences is to suppose that younger children have had less practice217

drawing and are thus less well equipped to express what they know using this medium,218

despite having achieved a mature understanding of these visual categories. This account219

predicts that changes in recognizability are primarily driven by children’s drawing220

experience with specific categories, either on their own or with caregivers and peers in221

educational contexts. If so, then frequently drawn categories (e.g., trees, people, dogs)222

should show the strongest developmental trends. To test this possibility, we asked223

parents to report how often their child produces drawings of each category (N=50224

parents of children aged 3-10 years, Methods), revealing substantial variation in the225

frequency with which children tend to draw each of the categories in our stimulus set226

(see Appendix, Figure A6). We found converging evidence that drawings of more227

frequently practiced categories were no more recognizable and were not associated with228

stronger developmental trends; there was neither a main effect of drawing frequency on229

classification accuracy nor an interaction with age in a generalized linear mixed-effects230

model (see Table 1). This result was robust to the choice of model (VGG-19 and CLIP,231

see Appendix A3) and held when using human recognition scores in a separate232

controlled experiment (see Appendix, Figure A4, Appendix Table A4). Instead, we saw233

that many infrequently drawn categories (e.g. ice cream) had relatively high234

classification accuracy, while some frequently drawn categories (e.g. dog) had relatively235

low classification accuracy and were more likely to be confused with other similar236

categories (e.g., other animals) (see Figure 2B).237

Figure 2B shows these developmental trends broken down by the category that238

children were intending to draw, highlighting the large amounts of variability across239

categories (see Appendix, A3 for validation using CLIP embeddings). We additionally240

examined whether other measures of frequency of experience in children’s daily life241

might predict this item variation—–for example, frequency in child-directed speech or242

all English-language books (see Appendix A5). However, we again found no discernable243
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relationship between these measures of frequency and the recognizability of children’s244

drawings.245

Visuomotor control explains some but not all of changes in drawing246

recognizability. We anticipated that the recognizability of children’s drawings would247

vary with their ability to control and plan their motor movements. Children spend248

countless hours across childhood both learning to write and practicing how to produce249

different shapes. Further, children’s engagement with this drawing task could also250

reasonably vary as a function of age, with more skilled children spending more time,251

ink, or strokes on their drawings. We therefore measured the amount of time and effort252

children put into their drawings, and estimated children’s visuomotor control via the253

simple shape tracing assessment task at the drawing kiosk. Children were instructed to254

trace both a relatively easy shape (a square) as well as a complex, novel shape that255

contained both curved and sharp segments (see Figure 1). For each participant, we used256

their performance on these two tracing trials to derive estimates of their tracing ability.257

Specifically, we obtained ratings of tracing accuracy from independent adult judges for a258

subset of tracings and then used these ratings to adapt an image registration algorithm259

(Sandkühler, Jud, Andermatt, & Cattin, 2018) to predict tracing scores for held-out260

tracings produced by children (see Methods). We found that tracing scores produced by261

the same participant were moderately correlated (r = .60, t = 61.93, df = 6754, p <262

.001, N = 6,756), despite the irregular shape being harder to trace than the square.263

Thus, despite the brevity of this tracing assessment, the resulting measure had264

moderate reliability.265

If age-related changes in drawing recognizability primarily reflect changes in266

visuomotor control (Freeman, 1987), then accounting for these more direct measures of267

visuomotor control ought to explain away the age-related variance we have observed so268

far. However, we still observed a robust main effect of age even after accounting for269

tracing abilities (Table 1) and other effort covariates (see Table 1), including the amount270

of time children spent drawing, the number of strokes in their drawings, and the amount271

of “ink” that they used (see Methods); this effect was robust to model choice (see272
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Appendix A3). These findings suggest that even though children’s ability to control and273

plan their motor movements does predict their ability to produce recognizable drawings,274

this factor alone does not fully account for the observed developmental changes.275

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.690 0.173 -3.979 <0.001

Age (in years) 0.251 0.020 12.805 <0.001

Est. drawing frequency -0.062 0.173 -0.356 0.721

Average tracing score 0.267 0.020 13.529 <0.001

Time spent drawing 0.039 0.021 1.868 0.062

’Ink’ used -0.031 0.020 -1.546 0.122

Number of strokes 0.008 0.018 0.477 0.634

Age*drawing frequency 0.017 0.017 1.042 0.298
Table 1

Model coefficients of a GLMM predicting the recognizability of each drawing (i.e. binary

classification scores), including random intercepts for each category and participant. All

predictors were z-scored so that coefficients are comparable.

Recognizable drawings contain more category-diagnostic information276

across development. The above results suggest that children gradually improve277

their ability to include diagnostic visual information in their drawings. However, they278

are also consistent with an alternative account where younger children are just as able279

to produce recognizable drawings when they are engaged with the task, but are less280

likely to stay on task than older children and thus produce unrecognizable drawings281

more often. To tease these two possibilities apart, we compared how much diagnostic282

visual information was contained in drawings that were correctly classified.283

For example, among drawings that were correctly recognized as clocks, did older284

children also include visual information that more clearly set them apart from other285

similar categories – for example, watches? Insofar as age-related improvements in286

classification accuracy primarily reflect a decrease in the proportion of unrecognizable287
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drawings – rather than an increase in the quality of their recognizable drawings – we288

should expect drawings that were correctly classified to contain similar amounts of289

diagnostic visual information, regardless of whether they were produced by younger or290

older children.291

We found that even for drawings that were correctly classified (38.6% of the292

balanced subset of drawings, N=8,590), the amount of diagnostic information they293

contained increased as a function of age, as measured by the log-odds probability294

assigned by the logistic-regression classifier to the target category (see Methods, B =295

0.111, SE = 0.015, df = 3544.18, t = 7.354, P < 0.001) (see Appendix, Table A6. This296

analysis provides converging evidence that age-related improvements in children’s297

abilities to produce recognizable drawings reflect a gradual increase in the amount of298

category-diagnostic information in their drawings.299

Unrecognizable drawings still contain semantically relevant300

information. Even if a child does not know the diagnostic features of giraffes or301

rabbits, they likely know that both are animals with four legs. Thus, this kind of coarse302

semantic information may still be contained in children’s unrecognizable drawings.303

Indeed, prior work suggests that basic-level recognition – recognizing something as a304

rabbit – is not a pre-requisite for inferring semantic information. For example, adults305

can reliably judge the animacy (animate vs. inanimate) and real-world size of306

unrecognizable, textured images by inferring that animals tend to have high curvature307

and that larger, inanimate objects (e.g., couches) tend to have boxier shape structures308

(Long, Konkle, Cohen, & Alvarez, 2016; Long, Störmer, & Alvarez, 2017; Long, Yu, &309

Konkle, 2018) and children appear to be sensitive to these cues by the preschool years310

(Long, Moher, Carey, & Konkle, 2019).311

Following this idea, we reasoned that even young children’s children’s misclassified312

drawings might contain information about the animacy and real-world size of the313

category they were intending to draw (see Figure 3A). To examine this possibility, we314

analyzed the patterns of misclassifications made by the logistic regressions and found315

that misclassified drawings reliably carried information about both real-world size (see316
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Figure 3 . A: Classifier probabilities for the subset of drawings that were misclassified on

the basis of VGG-19 embeddings (FC6). The y-axis shows the category children were

intending to draw; the x-axis shows all of the categories in the dataset. Lighter values

represent greater classifier probabilities assigned to a given category (see colorbar).

(B,C). Proportion of misclassified drawings that contained the correct animacy/object

size information of the target category (relative to baseline in the dataset). Each dot

represents the proportion of drawings in a given category that had correct

animacy/real-world size information relative to baseline at each age, respectively. Error

bars represent bootstrapped 95% confidence intervals.

Figure 3C) and animacy (see Figure 3B) across all ages. We also found substantial317

structure in the pattern of probabilities assigned by the classifier to the other categories318

(see Figure 3A): for example, unrecognizable drawings of an octopus were often assigned319

a high classifier probability for a a spider. These results suggest that children’s320

unrecognizable drawings are far from meaningless scribbles; instead, they contain321

relevant semantic information about the category children were intending to draw.322
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bird dog lampairplanesheep boatrabbit

Figure 4 . Example drawings from 4-8 year old’s, with part annotations. Each color

represents object parts labels agreed upon by human annotators; grey lines represent

strokes with multiple parts, and black lines represent unintelligible strokes.

Drawings contain different semantic parts across development. While323

these findings so far provide strong evidence for age-related gains in the ability to324

produce recognizable drawings, it is not clear exactly what aspects of these drawings325

account for this improvement. A natural possibility is that children gradually learn326

which object parts to include and how much to emphasize those parts (e.g., long ears327

for rabbits) in their drawings (Tversky, 1989; Tversky & Hemenway, 1984) as they learn328

about the semantic properties of those categories. To explore this idea, we collected329

semantic part annotations of the visible object parts in a subset of N=2021 drawings,330

and examined developmental changes in which parts children prioritized in their331

drawings throughout development.332

Consistent with this idea, we found that drawings produced by older children333

generally contained more unique semantic parts than drawings by younger children (B334

= 0.395, SE = 0.041, df = 2071, P < .001; Figure 5), lending support to the notion335
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Figure 5 . Proportion of drawings that included a given object part for each object

category as a function of children’s age (see Methods). The size of each dot reflects the

average emphasis (proportion of stroke length relative to the entire drawing) for each

object part within each bin (max plotted part emphasis = .5); the top five most frequent

object parts are included for each category excluding generic "body/head" parts.

that, across development, children learn to more effectively express what they know336

about various visual concepts by enriching their drawings with additional semantic part337

information (see Appendix, Figure A8). For some concepts, these gains appeared to be338

specific to single part: for example, older children were more likely to produce cups with339

handles and cars with recognizable wheels. For other concepts, however, age-related340

changes were more complex: for example, in drawings of bears, both ears and eyes341

appeared to change in prevalence and emphasis. Further, while most younger children’s342

drawings of rabbits included recognizable ears, which are in principle informative about343

the category, many of them were still not recognizable as rabbits. Taken together, these344

exploratory findings suggest that while there are clear age-related changes in the part345

complexity of children’s drawings, the mere presence of – or amount of emphasis on –346

any particular part may not be sufficient to account for developmental variation in its347

recognizability (see Appendix Figure A9). Instead, they suggest that visuospatial348

information about what these parts look like and how they are arranged may be needed349

to explain why drawings by older children are more recognizable than those by younger350

ones. For example, ears on rabbits may need to be more elongated relative to the head351
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to provide a strong enough cue to category membership.352

Development of drawing recognition353

Why do children include more diagnostic visual information in their drawings as354

they grow older? One source of these developmental changes may be refinements in355

children’s internal visual concepts. As children acquire more knowledge about the visual356

distinctions between visual concepts, children might more clearly represent the visual357

information that best distinguishes depictions of rabbits from dogs, for example, and358

may be able to use this information when recognizing drawings. This account thus359

predicts that children should improve over development in their ability to exploit visual360

information in drawings to recognize their intended meaning.361

To explore this idea, we installed a “guessing game” in the same kiosk at the local362

science museum (see Figure 1, top right) where children guessed the category that an363

earlier child’s drawing referred to. These drawings were randomly sampled from the364

larger drawing dataset and thus varied in the degree to which they were recognizable365

and hence amount of diagnostic visual information they contained. This design choice366

allows us to examine how children’s visual recognition abilities vary when drawings367

contain differing amounts of diagnostic visual information.368

Our goal in designing the visual recognition task was for it to be challenging yet369

not demand that children track a large number of comparisons. At the beginning of370

each session, children completed four practice trials in which they were cued with a371

photograph and asked to “tap the [vehicle/animal/object] that goes with the picture,”372

choosing from an array of four photographs of different visual concepts (see Figure 1).373

Children were then cued with drawings of these categories and responded using the374

same photograph buttons; photograph matching trials were also interspersed375

throughout the session as attention checks. We sequentially deployed four different376

versions of this task, including a different set of four perceptually similar categories in377

each (e.g., hat, bottle, cup, lamp). After exclusions, our dataset from this task included378

1,789 children ages 3–10 years (see Methods).379
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Figure 6 . A. Drawing recognition as a function of the age of the child who participated

in the guessing game; each dot represents data from one child who participated and is

scaled by the number of trials they completed. (B,C). Drawing recognition data plotted

separately by the age of the child participating as a function of the (B) amount of

diagnostic visual information in each drawing, operationalized as the the classifier

evidence assigned to each sketch relative to the distractor categories and (C) the

number of unique object parts in each drawing. Both variables are binned into deciles

for visualization purposes. Error bars represent bootstrapped 95% confidence intervals.

Overall, we found that children became steadily better at identifying the category380

that a drawing referred to (see Figure 6A). In contrast, performance on photograph381

matching trials was relatively similar across ages. All children whose data were included382

in our analyses scored >75% correct on photograph trials and average accuracy in each383

group ranged from M=90-93% correct. Thus, variation in drawing recognition accuracy384

is unlikely to be explained by generic differences in motivation or task engagement.385

Children’s drawing recognition improves over development. We next386

evaluated the idea that children’s ability to exploit category-diagnostic visual387

information during recognition improves over childhood. We first tested how children’s388

drawing recognition ability varied with respect to the amount of diagnostic visual389

information in a given drawing. To do so, for each drawing that appeared in the390

guessing games, we measured diagnostic visual information. We fit a 4-way logistic391

regression classifier trained on the VGG-19 features extracted from the drawings392

presented in each guessing game (see Methods) and measured diagnostic information as393
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.050 0.121 0.412 0.680

Classifier evidence 0.477 0.046 10.405 <0.001

Recognizer Age 0.317 0.019 16.777 <0.001

Classifier evidence*Recognizer Age 0.062 0.014 4.246 <0.001

Table 2

Model coefficients of a GLMM predicting visual recognition performance as a function of

recognizer age and classifier evidence. All predictors were z-scored such that coefficients

are comparable.

the log-odds ratio between the intended category and the foil categories. That is, the394

diagnostic information for a dog drawing was defined relative to its perceptual similarity395

to the other choices in the recognition task (i.e., bird, fish, rabbit). We then fit a396

generalized linear mixed effects models predicting children’s recognition performance397

with child’s age, this metric of diagnostic visual features, and their interaction as fixed398

effects (see Methods for further details and robustness checks using CLIP).399

Drawings with more diagnostic visual information were better recognized across400

all ages (see Table 2, Figure 6B, CLIP robustness check in Appendix, Table B2). Yet401

older children were also better able to capitalize on graded differences in the diagnostic402

visual information in drawings when recognizing them (see Figure 6B), evidenced by an403

interaction between classifier evidence and recognizer age in both cases. This result held404

when we restricted our analyses to a subset of high-performing children who performed405

at ceiling on photograph matching trials (see Appendix, B1) suggesting that these effects406

are unlikely to be driven by a differences across development in either engagement or in407

the ability to match drawings with the picture-cue buttons (see individual category408

effects in Appendix, B3). Children became steadily better over development at using409

diagnostic visual information to recognize the intended meaning of line drawings.410

Children’s drawing recognition varies with part information. Finally, we411

evaluated how children’s abilities to use object part information during visual412
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recognition changes across development (Juttner et al., 2016; Mash, 2006). Specifically,413

we examined how children’s recognition accuracy varied with the number of unique414

recognizable object parts included in the drawings they tried to recognize. We again fit415

a generalized linear mixed effect model to the recognition data, modeling the interaction416

between the number of unique parts in each drawing and the age of the child recognizing417

the drawing, with the maximal random effects structure supported by our data.418

We found that drawings with more unique object parts tended to be better419

recognized – but, unexpectedly, that drawings with many object parts were less well420

recognized than drawings with an intermediate number of parts (see Figure 6C) though421

there was substantial variation across categories (see Appendix, Figure A1, see422

Table B3). Critically, we again found that older children were better able to capitalize423

on increasing object part information during recognition, as evidenced by a significant424

interaction between between the number of unique parts in the drawings and the age of425

child recognizing the drawings. In other words, children’s ability to integrate additional426

object part information during recognition changed across development (see all427

coefficients in Appendix, Table B3). These additional analyses using object part428

annotations suggest that children’s ability to use diagnostic visual information during429

recognition matures gradually throughout childhood.430

Relationship between visual production and recognition431

So far, our descriptive results suggest that both visual production and recognition432

of drawings develop gradually and in parallel throughout childhood. To what degree do433

these developmental trajectories reflect changes in the same mental representations of434

visual concepts? Insofar as children’s abilities to recognize what drawings mean and to435

produce meaningful drawings both rely on a shared mental representation, then their436

ability to produce a drawing of a dog may be correlated with their ability to recognize a437

drawing of a dog, as in adults (Perdreau & Cavanagh, 2014). To explore this possibility,438

we borrow an analysis technique used in language acquisition (Braginsky, Yurovsky,439

Marchman, & Frank, 2019), where variation in word production is well-predicted by440
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Figure 7 . Each dot represents a category (e.g., hat) at a given age (in years), where the

y-axis value represents how well children of that age produced recognizable drawings of

that category (as assessed by CLIP model classifications) and the x-axis value

represents how well children of that age were able to recognize the top 30% most

recognizable drawings of that category (as assessed by accuracy in the 4AFC

recognition games). Independent sets of drawings are analyzed in each case.

independent data about that word, e.g., the frequency of a word in English books441

(Goodman, Dale, & Li, 2008).442

We thus explored how well variation in visual production is related to visual443

recognition at the category level, acknowledging the exploratory nature of these444

analyses.2 To do so, we examined children’s visual production and recognition abilities445

using independent sets of drawings of the same categories. To estimate drawing446

recognition ability, we used children’s performance on the guessing games to calculate447

2 While some children may have both contributed drawings and participated in the recognition game

with different categories, these sessions were anonymous, and thus we do not have access to

within-child data.
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how often children of a given age, on average, were able to recognize drawings of a given448

category. To ensure that we were examining children’s visual recognition abilities for449

relatively recognizable drawings, we analyzed how well children could recognize the top450

30 percent most recognizable drawings of each category (using CLIP classification451

probabilities, see Methods). To estimate drawing production abilities, we calculated how452

often children at each age could produce recognizable drawings of a given category (e.g.,453

a dog), as assessed by CLIP model recognition scores. For these exploratory analyses,454

we used CLIP model classifications, as CLIP showed less dramatic category variation455

relative to VGG-19 classifications (see Appendix, Figure A2). In addition, within the456

independent set of sketches used to assess children’s recognition, CLIP showed a higher457

correlation with children’s recognition behaviors (aggregating across individual sketches;458

VGG-19, r=.28; CLIP, r=.43).459

Overall, we found that children’s visual production and visual recognition abilities460

were positively related at the category-level at all ages (see Figure 7). For example,461

while dogs and sheep were consistently both harder to produce and to recognize, rabbits462

and hats were easier to produce and recognize. Thus, these exploratory results suggest463

relative consistency across categories in these two tasks, suggesting that children’s464

ability to perform well in both tasks may rely on a shared visual representation, and465

paving the way for future work that seeks to understand the sources of this category466

variation using within-child, controlled experiments.467

General Discussion468

We conducted a systematic investigation of how children produce and recognize469

line drawings of a wide range of everyday visual concepts across development (2-10470

years of age). We developed a large dataset of children’s digital drawings (>37K) and471

capitalized on innovations in machine learning to quantify changes in children’s472

drawings across development. We found robust improvements in children’s ability to473

include diagnostic visual information via recognizable object parts in their drawings,474

and these developmental changes were not reducible to either increased effort or better475
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visuomotor abilities. Further, we found that children’s unrecognizable drawings still476

contained information about the animacy and real-world size of the visual concepts they477

were trying to depict; highlighting an intermediate stage between scribbles and fully478

recognizable drawings. We also found improvements throughout childhood in children’s479

ability to recognize each other’s drawings, particularly in their ability to capitalize on480

diagnostic visual information during drawing recognition tasks. Together, these results481

document parallel developmental changes in how children use diagnostic visual482

information when producing and recognizing freehand line drawings, suggesting that483

refinements in children’s visual concepts may underlie improvements across both tasks.484

As children’s perceptual abilities (Bova et al., 2007; Natu et al., 2016), semantic485

knowledge (Tversky, 1985; Vales, Stevens, & Fisher, 2020), and visuomotor skills (Li &486

James, 2016) evolve across childhood, children’s changing visual concepts influence both487

how children produce and recognize freehand line drawings.488

More broadly, the present work highlights how the combination of modern489

machine-learning methods and larger-scale datasets of naturalistic behaviors can490

contribute to theoretical progress in developmental science. By collecting rich data from491

many participants over a large developmental age range, we can more precisely estimate492

graded changes in children’s abilities and the degree to which these trajectories vary493

across categories. In turn, our use of innovations in computer vision and computational494

modeling allow the analysis of the entirety of this large dataset, capturing variation495

across both unrecognizable and recognizable drawings in a single analytic approach496

(which would have been intractable with human ratings, e.g., how similar each dog497

drawing was to every other category in the dataset). Using this approach, we were able498

to distinguish variability in children’s drawings due to a range of different499

developmental processes – including motor skill and task effort – from variability related500

to visual concept knowledge. We believe that this work paints a more accurate picture501

of developmental change and opens up new avenues for investigating the various factors502

that shape visual concepts throughout development (Karmiloff-Smith, 1990; Minsky &503

Papert, 1972) both using large-scale datasets and controlled, within-child experiments504
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that directly relate visual production and recognition and examine item variation.505

Variation across visual concepts506

Our exploratory analyses suggested that children’s abilities to produce and507

recognize drawings were correlated at the category-level at each age, e.g, drawings of508

dogs were both harder to produce and to recognize. Further, estimates of how often509

these items tend to be drawn or experienced did not explain this variation. Why might510

some categories be easier to draw and to recognize?511

One possibility is that these item effects are related to other metrics of visual512

experience with different categories beyond what we have measured: Perhaps exposure513

frequency in educational materials or children’s media were not adequately captured by514

our surveys. Or perhaps children may experience more invariant exemplars of some515

categories, making it easier to identify and draw those categories. For example, while516

dogs may vary substantially, ice cream cones have a relatively more invariant form.517

Children may in turn develop more refined visual representations for more frequently518

experienced and more invariant items, leading to more recognizable drawings.519

Any effects of exposure frequency or form variability might interact with the520

degree to which a category has a 3D shape structure that can be easily depicted using a521

two-dimensional line drawing. For example, canonical mushrooms have a relatively522

simple shape, whereas rabbits have many sub-parts that need to be depicted (i.e., legs,523

ears, nose, mouth, tail), and children may also struggle to arrange these sub-parts in a524

way that conveys the meaning of the visual concept (i.e., the correct ratio between the525

size of the rabbit’s ears and head). In turn, these shape structures may lead different526

categories to have more or less typical iconic representations that children are accessing527

when producing and recognizing line drawings. For example, trains are often depicted528

as steam trains, as modern trains can be hard to distinguish from other vehicles as line529

drawings. Future work may be able to use our dataset to examine the relationship of530

these factors to visual production and recognition, as we purposefully included items531

that vary along these dimensions.532
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533

From scribbles to categories534

The present work also highlights the gradual progression in children’s drawings535

from exploratory scribbles through an intermediate stage (Morra & Panesi, 2017) where536

their drawings may not unequivocally convey a specific visual concept (e.g., a giraffe),537

while still containing enough visual information to be recognizable as an “animal.” An538

intriguing implication is that the mechanisms by which children reliably produce such539

semantically ambiguous drawings might be related to mid-level visual representations in540

the brain that are sensitive to coarse distinctions between broad classes of visual objects541

(i.e., large inanimate vs. small inanimate vs. animals) without relying on category-level542

distinctions (Long et al., 2016, 2019, 2017). Moreover, drawing tasks may allow children543

to convey this kind of partial knowledge about a visual concept that may otherwise be544

difficult for them to express verbally. And as children learn more about a specific visual545

concept – for example, that giraffes have longer legs than antelopes or elephants – these546

incremental gains in conceptual knowledge may manifest in their drawings, even if they547

are not yet clearly recognizable as agiraffe. This work thus showcases the potential of548

drawing production tasks for examining graded changes in how children’s knowledge549

about visual concepts grows and changes across development.550

Possible learning mechanisms551

Several learning mechanisms are consistent with the developmental changes we552

observed. One possibility is that children become better visual communicators as they553

learn which visual features are most effective at conveying category membership554

through the process of producing drawings. In turn, this process of using drawings and555

other visual modalities to communicate various visual concepts may have downstream556

effects on children’s ability to recognize drawings of them. Indeed, both drawing experts557

(Perdreau & Cavanagh, 2013b) and naïve adults who practice drawing similar categories558

(Fan et al., 2020) show better enhanced visual recognition abilities of these categories.559

Such a mechanism would be consistent with prior work suggesting that learning to560
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produce letters by hand can support subsequent letter recognition (James, 2017;561

Longcamp, Zerbato-Poudou, & Velay, 2005), with recent findings pointing towards the562

variability of visual forms seen while learning to write as a key factor (Li & James,563

2016). Thus, the process of iteratively producing and recognizing drawings of visual564

concepts could cause these parallel developmental changes in both domains. Contra a565

strong version of this account, however, we did not find strong effects of drawing566

practice at the category level in the present data: for example, ice cream cones were567

among the best recognized categories and estimated (by parents) to be among the least568

practiced by children. In addition, we did not see any obvious changes in the569

developmental trajectory around 6 years of age when most children start to write570

(though this achievement might cause smaller changes that we could not detect in our571

data); rather, we observed evidence for gradual growth throughout the entire age range.572

A second, non-exclusive possibility is that children are explicitly learning the573

diagnostic features of categories as they enrich their semantic knowledge. For example,574

children may learn about the functional properties of different attributes: camels have575

humps to store water, clocks have numbers to tell time, and whales spout water because576

they need to breathe. As a result, children may come to more clearly represent which577

visual features are diagnostic of different categories and why. In turn, this semantic578

knowledge could percolate into children’s visual concepts and thus be accessed both579

when children draw an object and when they recognize it. This possibility aligns with a580

wealth of evidence suggesting that continual learning about different categories581

throughout the early school years shapes children’s categorization abilities. For582

example, children change in how they think about the diagnosticity of different583

semantic properties across development: in early childhood, the fastest cheetah – that584

is, the exemplar with the most extreme value on some property – tends to be seen as585

the best and the most representative cheetah (Foster-Hanson & Rhodes, 2019). At the586

same time, taxonomic groupings become increasingly important both in children’s587

explicit conceptual judgements (Tversky, 1985) and when children spontaneously588

arrange different visual concepts (e.g., wild vs. farm animals, Vales et al., 2020). Thus,589
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children’s evolving semantic knowledge could shape the visual features children use both590

when producing and recognizing different visual concepts.591

A third possibility, again not mutually exclusive with the other two, is that592

children are implicitly learning category-diagnostic information through the process of593

visual categorization itself: through repetitively viewing and categorizing depictions,594

real-life examples, and photographs of these different categories. Indeed, the neural595

networks used here to categorize drawings did not have visuomotor experience drawing596

or training about the semantic properties of these categories. Thus in principle it is597

possible that children could be refining their visual concepts without substantial598

involvement from other cognitive or sensorimotor systems.599

Limitations and future directions600

There are various limitations to the generalizability of these findings that future601

work could address. First, while these datasets are large and sample heterogeneous602

populations, all drawings and recognition behaviors were collected at a single603

geographical location, limiting the generalizability of these results to children from604

other cultural or socioeconomic backgrounds (Henrich, Heine, & Norenzayan, 2010).605

Children in different contexts may spend considerably more or less time viewing and606

producing depictions of different categories, and thus could vary reasonably affect how607

how they represent them. Further, different cultural contexts have different conventions608

for depicting visual concepts, as evidenced by drawings from adults (Lewis,609

Balamurugan, Zheng, & Lupyan, 2021). However, there are likely to be some aspects of610

drawing production and interpretation that are broadly shared across cultural contexts611

(Cavanagh, 2005; Hertzmann, 2020), given prior work that has investigated picture612

comprehension in communities with modest exposure to Western visual media613

(Deregowski, 1989; Kennedy & Ross, 1975). Moreover, there is evidence from earlier614

work that some of this convergence may reflect evolutionarily conserved visual615

processing mechanisms, as non-human primates exhibit can recognize the616

correspondence between line drawings and their real-world referents (Itakura, 1994;617
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Tanaka, 2007). Future work that examines drawings across different cultural contexts in618

both adults (Lewis et al., 2021) and children will help quantify the consistency and619

variability in how we represent and depict visual concepts.620

Second, while we imposed strong filtering requirements, we were not present while621

the children were drawing or guessing at the kiosk and thus cannot be sure that we622

eliminated all sources of noise or interference. Many sources of additional interference623

would only generate noise in our data, though, rather than creating specific age-related624

trends. Nonetheless, we replicated our main experimental results on drawing production625

in a controlled, experimental context with a smaller set of categories (see Appendix,626

Figure A4).627

Third, since these datasets are cross-sectional, they do not directly relate visual628

production and recognition abilities at the individual level. Our exploratory,629

category-level analyses suggest variation in these two abilities are correlated across630

development; ultimately, however, within-child measurements will be necessary to631

confirm that changes in children’s visual concepts underlie the observed changes in both632

tasks. In addition, these correlational analyses can only provide hints as to whether633

changes in visual production cause changes in visual recognition or vice versa.634

Finer-grain, within-child training studies (as in Bremner & Moore, 1984) could provide635

traction on the direction of causality between visual production and recognition.636

Conclusion637

Our results call for further systematic, experimental investigations into the kinds638

of experience – including visuomotor practice, semantic enrichment, and visual exposure639

– that may influence visual production and recognition in children, and we hope that640

the open datasets and tools we have created here will open up new avenues for such641

future work. We propose that a full understanding of how children produce and642

recognize drawings of visual concepts will allow a unique and novel perspective on the643

both the development and the nature of visual concepts: the representations that allow644

us to easily derive meaning from what we see.645
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Methods & Materials646

Drawing Station Details647

While the interface was designed to be navigable by children, the first page of the648

drawing station showed a short consent form and asked parents to enter their child’s age649

in years; no other demographic information was collected. Afterwards, video prompts of650

an experimenter guided the child through the rest of the experiment; an initial video651

stated that this game was “only for one person at a time” and asked children to “draw652

by themselves.” Every session at the drawing station started with tracing trials before653

moving on to the category prompts (“What about a [couch]? Can you draw a [couch]?”).654

Children could stop the experiment at any time by pressing a stop button; each trial655

ended after 30 seconds or after the child pressed the “next” button. Six different sets of656

eight category prompts rotated at the station, yielding drawings from a total of 48657

categories (see Appendix Figure B1, airplane, apple, bear, bed, bee, bike, bird, boat,658

book, bottle, bowl, cactus, camel, car, cat, chair, clock, couch, cow, cup, dog, elephant,659

face, fish, frog, hand, hat, horse, house, ice cream, key, lamp, mushroom, octopus,660

person, phone, piano, rabbit, scissors, sheep, snail, spider, tiger, train, tree, TV, watch,661

whale); these categories were also chosen to overlap with those in the QuickDraw662

database of adult drawings (https://github.com/googlecreativelab/quickdraw-dataset).663

Each set of category prompts that rotated at the station thus included both animate664

and inanimate categories as well as commonly and infrequently drawn categories;665

category prompts were presented in a random order.666

Drawing Dataset Filtering & Descriptives667

Given that we could not easily monitor all environmental variables at the drawing668

station that could impact task engagement (e.g., ambient noise, distraction from other669

museum visitors), we anticipated the need to develop robust and consistent procedures670

for data quality assurance. We thus adopted strict screening procedures to ensure that671

any age-related trends we observed were not due to differences in task compliance672

across age. Early on, we noticed an unusual degree of sophistication in 2-year-old673
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participants’ drawings and suspected that adult caregivers accompanying these children674

may not have complied with task instructions to let children draw on their own. Thus,675

in subsequent versions of the drawing game, we surveyed participants to find out676

whether another child or an adult had also drawn during the session; all drawings where677

interference was reported were excluded from analyses. Out of 11797 subsequent678

sessions at the station, 3094 filled out the survey, and 719 reported interference, 6.09%679

of participants; these participants’ drawings were not rendered or included in analysis.680

When observing participants interacting with the drawing station, we noted that most681

children’s parents did not fill out the survey because they were either talking to other682

parents or taking care of a sibling. Further, while children could contribute drawing683

data more than once if they chose, this did not occur during our structured observation684

of the kiosk. This protocol was approved by both the Institutional Review Board at685

Stanford University (43992, Development of Children’s Drawing Abilities).686

Raw drawing data were then screened for task compliance using a combination of687

manual and automated procedures (i.e., excluding blank drawings, pure scribbles, and688

drawings containing words). A first subset of drawings (N = 15594 drawings) was689

filtered manually by one of the authors, resulting in N = 13119 drawings after690

exclusions (15.8% exclusion rate); subsequently, drawing filtering was crowd sourced via691

Prolific. 390 participants first completed a practice round demonstrating valid and692

invalid drawings and then viewed 24 drawings from a intended category at a time and693

selected the invalid drawings they judged to come from from off-task participants.694

Participants were reminded that unrecognizable drawings were still "valid" drawings,695

and could proceed to the next category only after selecting a ‘catch’ invalid drawing.696

Each drawing in the dataset was viewed at least twice by two different participants. To697

be conservative, any drawing that was marked as ‘invalid’ by a participant was excluded698

from the dataset. These stringent filtering criteria resulted in the exclusion of an699

additional 9897 drawings, leading to an overall exclusion rate of 24.57% of the drawings700

and a final set of 37770 drawings from 8084 sessions. In the final dataset, there were701

more younger than older children, despite filtering; see Appendix Table A1 for a702
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complete summary.703

Experimental Dataset Procedure704

In a separate experiment, children were seated in front of a touchscreen tablet705

with a trained experimenter. As in the larger dataset, children completed two706

shape-tracing trials, and then children produced drawings of 12 familiar object707

categories (airplane, bike, bird, car, cat, chair, cup, hat, house, rabbit, tree, watch)708

which were randomly assigned to different cue-types (verbal vs. picture). In this paper,709

we analyze only verbal-cued drawings for sake of comparison to the drawing station710

dataset. 135 children participated in the experiment; 6 participants were excluded, (3)711

for skipping more than 6 drawing trials and (3) for scribbling three or more times in a712

row. Six additional participants were tested but their data was not recorded due to a713

technical error, and two participants never advanced past the practice trials, leading to714

a final sample of 121 children. No additional demographic data was recorded about the715

participants. This protocol was approved by the Institutional Review Board at Stanford716

University (43992, Development of Children’s Drawing Abilities).717

Measuring Tracing Accuracy718

We developed an automated procedure for evaluating how accurately participants719

performed the tracing task that was validated against empirical judgments of tracing720

quality. We decompose tracing accuracy into two components: a shape error component721

and a spatial error component. Shape error reflects how closely the participant’s tracing722

matched the contours of the target shape; the spatial error reflects how closely the723

location, size, and orientation of the participant’s tracing matched the target shape.724

To compute these error components, we applied an image registration algorithm,725

AirLab (Sandkühler et al., 2018), to align each tracing to the target shape, yielding an726

affine transformation matrix that minimized the pixel-wise correlation distance between727

the aligned tracing, T , and the target shape, S: LossNCC = −
∑

S·T −
∑

E(S)E(T )
N

∑
V ar(S)V ar(T ) , where728

N is the number of pixels in both images.729
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The shape error was defined by the final correlation distance between the aligned730

tracing and the target shape. The spatial error was defined by the magnitude of three731

distinct error terms: location, orientation, and size error, derived by decomposing the732

affine transformation matrix above into translation, rotation, and scaling components,733

respectively. In sum, this procedure yielded four error values for each tracing: one value734

representing the shape error (i.e., the pixel-wise correlation distance) and three values735

representing the spatial error (i.e., magnitude of translation, rotation, scaling736

components).737

Although we assumed that both shape and spatial error terms should contribute738

to our measure of tracing task performance, we did not know how much weight to739

assign to each component to best predict empirical judgments of tracing quality. In740

order to estimate these weights, we collected quality ratings from adult observers741

(N=70) for 1325 tracings (i.e., 50-80 tracings per shape per age), each of which was742

rated 1-5 times. Raters were instructed to evaluate “how well the tracing matches the743

target shape and is aligned to the position of the target shape” on a 5-point scale.744

We fit an ordinal regression mixed-effects model to predict these 5-point ratings,745

which contained correlation distance, translation, rotation, scaling, and shape identity746

(square vs. star) as predictors, with random intercepts for rater. This model yielded747

parameter estimates that could then be used to score each tracing in the dataset748

(N=14372 tracings from 7612 children who completed at least one tracing trial). We749

averaged scores for both shapes within session to yield a single tracing score for each750

participant.751

Measuring effort covariates752

For each drawing trial, children had up to 30 seconds to complete their drawings753

with their fingers. We recorded both the final drawings and the parameters of each754

stroke produced by children at the drawing station, allowing us to estimate the amount755

of time children put into their drawings. As a second measure of effort, we also counted756

the number of strokes that children put into a given drawing. Finally, we estimated the757
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proportion of the drawing canvas that was filled (e.g., ‘ink used’) by computing the758

proportion of each final drawing that contained non-white pixels.759

Estimating drawing recognizability760

VGG-19: Visual Encoder. To encode the high-level visual features of each761

sketch, we used the VGG-19 architecture (Simonyan & Zisserman, 2014), a deep762

convolutional neural network pre-trained on Imagenet classification. For our main763

analysis, we used model activations in the second-to-last layer of this network, which is764

the first fully connected layer of the network (FC6), as prior work suggests that it765

contain more explicit representations of object identity than earlier layers (Fan et al.,766

2018; Long, Fan, & Frank, 2018; Yamins et al., 2014). Raw feature representations in767

this layer consist of flat 4096-dimensional vectors. to which we applied channel-wise768

normalization across all filtered drawings in the dataset. For additional analyses using769

the earlier convolutional layers, we first applied spatial averaging over the outputs of770

each layer to reduce their dimensionality, as in Fan et al., 2018, before also applying771

channel-wise normalization.772

VGG-19: Logistic regression classifiers. Next, we used these features to773

train object category decoders. To avoid any bias due to imbalance in the distribution774

of drawings over categories (since groups of categories ran at the station for different775

times), we sampled such that there were an equal number of drawings of each of the 48776

categories (N=22,272 drawings total). We then trained a 48-way logistic classifier with777

L2 regularization (tolerance = .1, regularization = .1), and used this classifier to778

estimate the category labels for a random held-out subset of 96 drawings (2 drawings779

from each category). No additional metadata about the age of the child who produced780

each sketch was provided to the decoder. This procedure was repeated for entire dataset781

(K=232 fold) yielding both a binary a recognition score and the softmax probability782

assigned to each target class in the dataset. We define classifier evidence as the783

log-odds ratio of the probability assigned to the target category vs. the other categories784

in the dataset; this metric thus captures the degree to which a given drawing contains785
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visual information that is diagnostic of the target category (and not of the other786

categories in the dataset); these log-transformed values are also more suitable for the787

linear-mixed effects models used in analyses.788

CLIP Classifications. For these analyses, we used the ViT-B/32789

implementation of CLIP publicly available at https://github.com/openai/CLIP. Model790

features were extracted for center-cropped versions of each sketch in the entire dataset791

(N=37770), and for the tokenized, text versions of the labels for each of the 48792

categories (e.g. "a dog"). We then computed the cosine similarity between the features793

for each sketch and each of the 48 category labels and assessed which category label794

received the highest similarity. If the category label that had the highest similar was the795

category children were prompted to draw, this was counted as a correct classification.796

Human recognition scores: Experimental Dataset. We measured the797

recognizability of each drawing in the controlled, experimental dataset via an online798

recognition experiment. Adult participants based in the U.S. were recruited via Prolific799

for a 15-minute experiment and asked to identify the category depicted in a random800

subset of approximately 140 drawings; each drawing was shown to 10 participants.801

Participants were shown these drawings in a random sequence and asked "What does802

this look like?" and selected their responses from the set of 12 categories and were803

encouraged to provide their best guess if they were unsure. No participants were804

excluded from analysis for missing the catch trial, which was included to verify that805

participants could accurately describe their goal in this task. We then computed a806

recognition score for each drawing, reflecting the proportion of participants who807

correctly identified the target category.808

Mixed-effect models. Two mixed effects models were fit to assess the degree809

to which children produced more recognizable drawings across childhood. A first810

generalized mixed effect model was fit to the binary classification scores for each811

drawing using a logit linking function. A second linear mixed effect model was fit to the812

log-odds target probability assigned to each drawing, restricting our analyses to813

correctly classified drawings. In both cases, we included fixed effects of children’s age814
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(in years), estimated drawing frequency for each category (via parental report), their815

interaction, children’s estimated tracing score (see above), the time children spent816

drawing (in seconds), the mean intensity of the drawing (i.e. percentage of non-white817

pixels), and the number of strokes children used. All predictors were scaled to have a818

mean of 0 and a standard deviation of 1. Random intercepts were included for each819

participant and each category.820

Animacy & object size information in misclassified drawings. For each821

misclassified drawing, we calculated whether the category assigned by the logistic822

regression classifier was the same animacy as the target category, assigning a binary823

animacy classification score for each drawing. The same procedure was repeated for824

inanimate objects with respect to their real-world object size (big objects: larger than a825

chair, small objects: can be held with one hand) (Konkle & Oliva, 2011; Long et al.,826

2016). These binary scores were averaged for each age and category, yielding a value827

between 0 and 1 representing the proportion of the drawings that were identified as828

having the correct animacy/size. As the proportion of animals/inanimate objects and829

big/small inanimate objects was not exactly balanced in the dataset, we subtracted the830

baseline prevalence for each broad category (i.e for animals, objects, big objects, and831

small objects) from this proportion. These values are plotted in Figures 3B,C, as are832

the bootstrapped 95% confidence intervals calculated using the baseline-corrected833

category values.834

Visual recognition task835

Behavioral task. On each trial of the guessing game, a photograph or drawing836

of an object category was presented on the screen, and children were asked to “tap the837

[animal/vehicle/object] that goes the with the [drawing/picture]”; response choices were838

indicated by circular buttons that were filled photographs of canonical exemplars from839

each category, as well as the name of the category written above; the position of these840

response buttons was randomized for each participant. A fifth response choice was a841

button with a question-mark icon that could be used by participants to indicate they842
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didn’t know which category the drawing belonged to. To familiarize participants with843

the interface, the first four trials of every game were four photograph trials, one for each844

of the response choices. To encourage accurate guessing, a pleasant sound was played845

when the correct category was chosen, and the box surrounding the image briefly846

turned green; no feedback was given for incorrect trials. Every ten trials, a catch trial847

appeared where participants were required to match a very similar photograph to the848

photographic response buttons.849

Drawing selection. We selected four subsets of categories for the guessing850

game at the station: small animals (dog, fish, rabbit, bird), vehicles (train, car, airplane,851

boat), small, inanimate objects (hat, bottle, cup, lamp), and large animals (camel, sheep,852

bear, tiger). Each version of the guessing game ran separately for approximately two853

months. For each game, we randomly selected drawings (20-25 per category, depending854

on availability) made by children ages 4-8 at the drawing station. We chose this age855

range to cover a wide range of drawing abilities and to ensure equal numbers of856

drawings were included per age group (as 9-10 year-old’s are infrequent visitors to the857

museum). This resulted in 516—616 drawings for each guessing game from which 48858

drawings were randomly sampled for each participant (8 drawings made by 4-,5-,6-,7-,859

and 8-year-olds). If children completed the entire session, this resulted in a total of 48860

trials for each participant (40 drawing trials and 8 photograph matching trials).861

Recognition data inclusion. As with the drawing data, we excluded any862

sessions where there was reported interference from parents or other children. As863

2-year-old’s showed significantly better performance than 3-year-old’s in our first two864

guessing games – signaling some interference from their caregivers or siblings that was865

not reported in the surveys –we chose to exclude 2-year-old’s from subsequent analyses.866

We excluded children who started the game but did not complete more than 1 trial867

after the practice trials (N = 1068 participants) and the 238 adults who participated.868

We also excluded all trials with reaction times slower than 10s or faster than 100ms,869

judging these to be off-task responses. Next, we excluded participants on the basis of870

their performance on practice and catch photograph matching trials. Given that these871
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catch trials presented a very easy recognition task, we excluded participants who did872

not achieve at least 75% accuracy on these trials (N = 795). The remaining 1789873

participants who met this criterion completed an average of M=21.69 trials. On total,874

we analyzed 36,615 trials where children recognized each other’s drawings. These875

analysis choices were pre-registered after examining data from two of the guessing games876

and then applied to the entire dataset (see registrations on https://osf.io/qymjr/).877

Recognition data analyses. To calculate the classifier evidence associated878

with each sketch that children recognized, we used the same visual encoder to extract879

visual features for each sketch (see Visual Encoder), and iteratively trained logistic880

regression classifiers (see Logistic Regression Classifier). For these analyses, we881

restricted the classification set to the drawings that were presented in each version of882

the guessing game to match the task conditions of the guessing game. We trained a883

separate logistic regression for each sketch that was presented using leave-one-out884

cross-validation. This procedure thus yielded probabilities assigned to each of four885

categories in each guessing game; these probabilities were used to calculate the log-odds886

ratios for the target category of each sketch which we refer to as classifier evidence. Due887

to random sampling, not every sketch included in the game had valid guesses associated888

with it; these sketches were thus not included in analyses. We then modeled children’s889

recognition behavior in a generalized linear mixed-effect model, where recognizer age (in890

years), classifier evidence, and their interaction were specified as fixed effects. All891

predictors were scaled between 0 and 1. We included random intercepts for the intended892

category of the sketch and for each subject who participated in the guessing game;893

random slopes were also included for the effect of classifier evidence on each intended894

category.895

Semantic part annotation task896

Crowdsourcing category part decompositions. We designed a web-based897

crowdsourcing platform and recruited 50 English-speaking adult participants from898

Prolific to identify the basic parts of objects for each of the 16 object categories. On899
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each trial, participants were cued with a text label of an object category and asked to900

list 3 to 10 object parts that came to mind (e.g., head, leg, tail, etc. for “tiger”).901

Participants were instructed to write only concrete parts of an object (e.g., “tail”)902

rather than abstract attributes (e.g., “tufted”), to use common names of parts rather903

than technical jargon (e.g., “prehensile”), and to generate as complete a part list as904

they could for each object category. We applied lemmatization to the resulting part905

decompositions to remove redundant part labels, such as “hoof” and “hoofs”, and906

manually edited part labels that were spelled incorrectly or with alternative spellings.907

We then selected the top 10% of part names that were most frequently listed. This908

generated a total of 82 object parts with a range of 5-13 possible parts per object909

category.910

Part labeling task. We developed a web-based annotation paradigm adapted911

from previous research (Huey, Walker, & Fan, 2021; Mukherjee, Hawkins, & Fan, 2019)912

to obtain detailed annotations of how each pen stroke in children’s drawings913

corresponded to the different parts of the depicted objects. 1,034 English-speaking914

adult participants were recruited from Prolific and completed the semantic annotation915

task. We excluded data from 78 additional participants for experiencing technical916

difficulties with the web interface (N=11) and for having low accuracy on our917

attention-check trial (N=67). Data collection was stopped when every drawing had918

received annotations from at least three annotators.919

Each annotator was presented with a set of 8 drawings randomly sampled from920

the drawing dataset but consistent within the same animacy and object size (i.e., small921

animals, large animals, vehicles, household objects). Each drawing was accompanied by922

the name of its object category (e.g., “airplane”), as well as a gallery of crowd-sourced923

part labels that corresponded to it. For each stroke in the presented drawing,924

annotators were prompted to tag it with the part label that described the part of the925

depicted object that it represented. Annotators were permitted to label a stroke with926

multiple part labels if they believed a stroke to represent multiple different parts of the927

depicted object, and were able to write their own custom label if they believed that928
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none of the provided part labels were fitting. They could also label a stroke as929

unintelligible if they could not discern what it represented. Annotators also completed930

an “attention-check” trial, consisting of a pre-selected drawing that had been annotated931

by a researcher and then randomly inserted into the set of drawings. If annotators did932

not match the researcher’s annotation criteria for this drawing, data sessions from these933

annotators were excluded from subsequent analysis.934

Annotation data preprocessing. First, we evaluated how often annotators935

agreed on what each stroke of children’s drawings represented by calculating the936

inter-rater consistency among annotators. Across drawings, annotators agreed on the937

same part label for 69.9% of strokes. There was modest improvement in agreement938

across age, with with drawings produced by older children eliciting more consistent939

annotations (4-year-old drawings = 68.3% mean agreement, 8-year-old drawings =940

69.8% mean agreement). We retained stroke annotations that were assigned the same941

part label(s) by at least two of three annotators. While annotators infrequently wrote942

custom labels (we did not analyze custom annotations for the present analysis) they943

only used 68 of the available 82 part labels. Our resultant dataset therefore contained944

14,159 annotated strokes across 2,088 drawings.945

Part inclusion and emphasis calculation. For part inclusion, we calculated946

the number of unique object parts assigned to each drawing; strokes labeled as947

unintelligible were not counted as distinct parts. For part emphasis, we calculated the948

proportion of the total length of strokes that were attributed to a particular object part949

in a drawing (e.g., wings), relative the total length of all strokes in the entire drawing950

(including strokes that were not agreed upon or that were unintelligable). If strokes951

were used to represent multiple object parts, we took the total length of the stroke and952

divided it by the number of parts that it was assigned to.953

Data Availability954

Source data are provided with this paper. The drawings and pre-processed data955

that support the findings are available at https://osf.io/qymjr/956
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Code Availability957

The code used analyze the data are available at https://osf.io/qymjr/958
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Appendix A

Supplemental analyses: visual production across childhood

Age Number of participants Number of drawings

2-year-olds 1231 3651

3-year-olds 1402 5342

4-year-olds 1451 6559

5-year-olds 1189 6411

6-year-olds 878 4990

7-year-olds 660 3817

8-year-olds 478 2570

9-year-olds 309 1800

10+-year-olds 486 2630
Table A1

Number of participants and drawings included in the filtered drawing dataset by each age

group.
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Figure A1 . Examples of correctly classified drawings from each of the 48 categories

presented at the experiment station in alphabetical order: airplane, apple, bear, bed,

bee, bike, bird, boat, book, bottle, bowl, cactus, (2nd row): camel, car, cat, chair, clock,

couch, cow, cup, dog, elephant, face, fish, (3rd row): frog, hand, hat, horse, house, ice

cream, key, lamp, mushroom, octopus, person, phone, (4th row): piano, rabbit, scissors,

sheep, snail, spider, tiger, train, tree, TV, watch, whale.

Term VIF SE_factor

1 Age 1.26 1.12

2 Drawing Frequency 1.00 1.00

3 Tracing score 1.24 1.11

4 Draw duration 1.30 1.14

5 Ink used 1.29 1.14

6 Number of strokes 1.07 1.03

7 Age* Drawing frequency 1.01 1.00
Table A2

Results of the multicolinearity analysis for the predictors used in the main GLMM

predicting the recognizability of children’s drawings.
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Figure A2 . Figure 2A, redone with CLIP classifications. Y-axis shows classification

accuracy as a function of children’s age (x-axis). Each dot represents data from an

individual category, which are connected by individual trend lines. Error bars represent

bootstrapped 95% confidence intervals.

−6

−4

−2

0

2

sn
ai

l
ha

nd
m

us
hr

oo
m

ra
bb

it
ho

us
e

ap
pl

e
bi

ke ha
t

sp
id

er
bo

ttl
e

fis
h

ch
ai

r
bo

at
ca

m
el

sc
is

so
rs

bi
rd

ho
rs

e
fa

ce
la

m
p

el
ep

ha
nt ca
t

sh
ee

p
ca

ct
us

cl
oc

k
pe

rs
on

w
ha

le
bo

w
l

co
w

cu
p

be
d

oc
to

pu
s

co
uc

h
tr

ee
ic

e.
cr

ea
m

fr
og be

e
be

ar ca
r

do
g

w
at

ch
tr

ai
n

ph
on

e
ai

rp
la

ne ke
y

bo
ok T
V

pi
an

o
tig

er

C
la

ss
ifi

er
 e

vi
de

nc
e 

(lo
g 

od
ds

)

CLIP log odds by category for all drawings

Figure A3 . CLIP log-odds probabilities (y-axis) assigned to each category as a function

of children’s age; each dot represents data from an individual category and age.
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Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.319 0.178 -7.410 <0.001

Age (in years) 0.329 0.019 17.225 <0.001

Est. drawing frequency 0.274 0.177 1.551 0.121

Tracing score 0.279 0.020 14.320 <0.001

Time spent drawing 0.195 0.019 10.065 <0.001

’Ink’ used 0.047 0.018 2.642 0.007

Number of strokes 0.070 0.030 2.338 0.019

Age*drawing frequency 0.029 0.014 2.030 0.042

Table A3

Model coefficients of a GLMM predicting the recognizability of each drawing (i.e. binary

classification scores) from CLIP classifications, including random intercepts for each

category and participant.
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Figure A4 . Drawing accuracy as a function of children’s age; children drew in response

to verbal prompts in a controlled, experimental setting. Y-axis reflects the proportion of

human observers who correctly identified the drawing in a 12AFC guessing task. Error

bars reflect 95 percent bootstrapped confidence intervals.



DEVELOPMENT OF VISUAL PRODUCTION AND RECOGNITION 54

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 0.736 0.024 12.391 30.226 <0.001

Drawing frequency 0.043 0.024 9.853 1.833 0.097

Age (in years) 0.151 0.011 247.928 14.348 <0.001

Drawing frequency * Age 0.007 0.007 1282.435 1.073 0.283

Table A4

Model coefficients of a linear mixed effect model predicting the recognizability of each

drawing (as assessed by crowd-sourced adult behavioral data). Drawings were produced

in an experimental context. All predictors are z-scored and random intercepts for each

category and participant are included.
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Figure A5 . Drawing accuracy as a function of children’s age using embeddings from

each layer in the VGG-19 network. Error bars represent 95 percent bootstrapped

confidence intervals.
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Figure A6 . Frequency (y-axis) with which parents (recruited online) estimated their

children drew each of the 48 categories in the dataset.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.965 0.237 -4.065 <0.001

Children’s age 0.360 0.021 17.006 <0.001

Freq. in adult books 0.515 0.312 1.653 0.098

Est. AoA 0.702 0.418 1.678 0.093

Freq. in CHILDES 0.129 0.398 0.323 0.747

Drawing frequency -0.290 0.326 -0.889 0.374

Table A5

Model coefficients of a GLMM predicting the recognizability of each drawing (i.e. binary

classification scores) from children’s age, the frequency of each category in CHILDES,

the estimated Age-of-Acquisition, and the frequency of each word in adult English books.

All predictors are z-scored; random intercepts for each category and participant are

included.
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Estimate Std. Error df t value Pr(>|t|)

(Intercept) -0.687 0.107 43.356 -6.434 <0.001

Children’s age 0.111 0.015 3544.182 7.354 <0.001

Drawing frequency 0.020 0.114 42.904 0.174 0.863

Average tracing rating 0.101 0.015 3964.435 6.753 <0.001

Time spent drawing -0.019 0.018 7710.462 -1.060 0.289

Ink spent 0.018 0.017 7888.865 1.042 0.297

Number of strokes 0.063 0.018 8110.693 3.535 0.000

Age*Drawing frequency 0.011 0.013 7672.028 0.811 0.417
Table A6

Model coefficients of a linear mixed effect model predicting the log-odds probability

assigned to correctly classified drawings using VGG embeddings, including random

intercepts for each category and participant.

High effort drawings

Low effort drawings

by ink used by strokes drawn by time spent by tracing ability
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Figure A7 . (Left): Classification accuracy by age, split into bins according to whether

children expended a greater/lesser amount of strokes, ink, or time, and by their

estimated tracing abilities (see Methods). (Right): Example drawings where children

spent higher/lower amounts of effort—greater/lower than average number of strokes,

time spent drawing, or ’ink’ used.
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Figure A8 . Number of unique parts per each object category included in the semantic

part annotation subset (N=2,088 drawings of 16 categories) across age.
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Figure A9 . Object parts included for each category as a function of the VGG-19

classification evidence, binned into quartiles; as in the main texts, only the top 4 object

parts that were frequently included (excluding head/body) are shown here. Dot size

represents the visual emphasis on each part.
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Appendix B

Supplemental materials: visual recognition
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Figure B1 . Replication of the main interaction on visual recognition behaviors

(proportion recognized, y-axis) by recognizer age (individual lines colored by age) and

classifier evidence, here using CLIP classification probabilities (binned into deciles on

the x-axis).

Including only high-performing children.1166

To ensure that these results were not driven by differences in motivation or1167

general task performance, we also conducted our main analyses on a very restricted1168

subset of our participants. We excluded any participant that did not achieve 100% on1169

the photograph matching trials or that scored less than 50% on the drawing recognition1170

trials. While this excluded nearly two-thirds of our participants, there were nonetheless1171

N=649 participants in this subset. Nonetheless, we still found the same pattern of1172

results (see Table B1): older children were still better at recognizing drawings and at1173

using diagnostic visual information in these drawings when recognizing them.1174
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.668 0.099 6.715 <0.001

Classifier evidence (scaled) 0.518 0.051 10.057 <0.001

Recognizer age (scaled) 0.141 0.023 6.190 <0.001

Classifier evidence*Recognizer Age 0.056 0.023 2.464 0.014
Table B1

Model coefficients of a GLMM predicting visual recognition performance, excluding any

participant who missed even one of the photograph trials or who scored less than 50% on

drawing recognition trials.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.397 0.183 2.167 0.030

Classifier evidence (scaled) 0.987 0.215 4.590 <0.001

Recognizer age (scaled) 0.367 0.021 17.644 <0.001

Classifier evidence*Recognizer Age 0.091 0.018 5.079 <0.001
Table B2

Model coefficients of a GLMM predicting visual recognition performance as a function of

recognizer age and the category-diagnostic information in drawings (derived from CLIP

embeddings, see Methods).
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Figure B2 . Proportion of drawings recognized (y-axis) as a function of both the age of

the child participating (x-axis) and the age of the child who originally produced the

drawing (each line represents a different age). Error bars depict 95% bootstrapped

confidence intervals.

Estimate SE z value Pr(>|z|)

(Intercept) 0.05 0.23 0.20 0.84

Parts 129.39 10.04 12.89 <0.001

Parts**2 -34.98 3.24 -10.79 <0.001

Age 0.34 0.02 17.04 <0.001

Parts x Age 12.70 2.71 4.69 <0.001

Parts**2 x Age -8.95 2.46 -3.64 <0.001
Table B3

All model coefficients from a generalized, linear mixed effect model predicting how well

children could recognize drawings of visual concepts as a function of their own age (Age;

recognizer age) and the number of unique parts included in each drawing.
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Figure B3 . Children’s drawing recognition behavior for each of the 16 categories

included in the recognition games; categories are grouped by the respective 4AFC game

they were embedded in. Dots are scaled by the amount of data available from each age

for each category (younger children were more frequent participants). Photo icons for

each category are shown in the bottom right of each panel.
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Figure B4 . Drawing recognition for each category as a function of the number of unique

parts included in each drawing; each individual dot is a unique drawing.


